Stochastic methods for aerosol chemistry: a compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals.
نویسندگان
چکیده
The heterogeneous oxidation of organic aerosol by hydroxyl radicals (OH) can proceed through two general pathways: functionalization, in which oxygen functional groups are added to the carbon skeleton, and fragmentation, in which carbon-carbon bonds are broken, producing higher volatility, lower molecular weight products. An ongoing challenge is to develop a quantitative molecular description of these pathways that connects the oxidative evolution of the average aerosol properties (e.g. size and hygroscopicity) to the transformation of free radical intermediates. In order to investigate the underlying molecular mechanism of aerosol oxidation, a relatively compact kinetics model is developed for the heterogeneous oxidation of squalane particles by OH using free radical intermediates that convert reactive hydrogen sites into oxygen functional groups. Stochastic simulation techniques are used to compare calculated system properties over ten oxidation lifetimes with the same properties measured in experiment. The time-dependent average squalane aerosol mass, volume, density, carbon number distribution of scission products, and the average elemental composition are predicted using known rate coefficients. For functionalization, the calculations reveal that the distribution of alcohol and carbonyl groups is controlled primarily by the initial OH abstraction rate and to lesser extent by the branching ratio between secondary peroxy radical product channels. For fragmentation, the calculations reveal that the formation of activated alkoxy radicals with neighboring functional groups controls the molecular decomposition, particularly at high O/C ratios. This kinetic scheme provides a framework for understanding the oxidation chemistry of a model organic aerosol and informs parameterizations of more complex systems.
منابع مشابه
Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol.
The competition between the addition of polar, oxygen-containing functional groups (functionalization) and the cleavage of C-C bonds (fragmentation) has a governing influence on the change in volatility of organic species upon atmospheric oxidation, and hence on the loading of tropospheric organic aerosol. However the relative importance of these two channels is generally poorly constrained for...
متن کاملRole of Water and Phase in the Heterogeneous Oxidation of Solid and Aqueous Succinic Acid Aerosol by Hydroxyl Radicals
The effect of the aerosol phase (solid versus aqueous) on the heterogeneous OH oxidation of succinic acid (C4H6O4) is investigated using an aerosol flow tube reactor. The molecular and elemental transformation of the aerosol is quantified using Direct Analysis in Real Time (DART), a soft atmospheric pressure ionization source, coupled to a high-resolution mass spectrometer. The aerosol phase, c...
متن کاملIsomeric product detection in the heterogeneous reaction of hydroxyl radicals with aerosol composed of branched and linear unsaturated organic molecules.
The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double bonds) with OH radicals are identified a...
متن کاملQuantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor.
Here we report a new method for measuring the heterogeneous chemistry of sub-micron organic aerosol particles using a continuous flow stirred tank reactor. This approach is designed to quantify the real time heterogeneous kinetics, using a relative rate method, under conditions of low oxidant concentration and long reaction times that more closely mimic the real atmosphere than the conditions u...
متن کاملFunctionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies
Multigenerational oxidation chemistry of atmospheric organic compounds and its effects on aerosol loadings and chemical composition is investigated by implementing the Two-Dimensional Volatility Basis Set (2-D-VBS) in a Lagrangian host chemical transport model. Three model formulations were chosen to explore the complex interactions between functionalization and fragmentation processes during g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2015